Georgeos Hardo

Wolfson College, Cambridge • Barton Rd, CB3 9BB

gh464@cam.ac.uk

EDUCATION

University of Cambridge, Wolfson College *PhD* in Biological Sciences (Systems & Synthetic Biology) Department of Engineering

University of Cambridge, Wolfson College MPhil in Biotechnology - Isaac Newton Scholar Department of Chemical Engineering and Biotechnology

University of Sheffield

B.Eng in Chemical Engineering Department of Chemical and Biological Engineering Oct 2019 - Present

 $Sept\ 2018\ \text{-}\ Sep\ 2019$ Special Commendation/1st Class Honours

Sept 2015 - July 2018 1st Class Honours

SKILLS

Software & Programming	Python, R, Julia, MATLAB, I ^A T _E X, mage analysis, machine learning (CNNs)
Lab experience	Standard molecular biology techniques, growth cultures & curves, cloning, plasmid design, time-lapse microscopy, microfluidics

EXPERIENCE

Department of Engineering - Cambridge UniversitySeptember 2019 - PresentPhD Student in Systems BiologySeptember 2019 - Present

- I use various numerical simulation, mathematical modelling, synthetic biology and high throughput timelapse microscopy tools to probe the inner workings of ageing, and persistence in bacteria and their links to antibiotic resistance and persistence.
- \cdot I mainly use Python and Julia to create ODE and stochastic simulations of gene expression systems.
- \cdot I also develop high analysis tools for analysis of high throughput microscopy images. I use a combination of traditional image analysis tool and machine learning to perform image semgentation.
- I use synthetic biology to both reverse and forward engineer bacteria to try and re-create natural ageing phenomenon, as well as making genome level modifications in order to probe the molecular basis for ageing, and the links to antibiotic resistance.
- \cdot I also have a side project where I explore the thermodynamics and reaction mechanics of systems of interacting nucleic acids.
- · I developed high fidelity DNA assembly techniques for synthetic biology. Modelled reaction mechanisms using kinetic and stochastic simulations of nucleic acid interactions.

AstraZeneca/MedImmune - Cambridge

June 2019 - September 2019

MPhil Graduate Researcher

- \cdot Engineering 5' and 3' mRNA untranslated regions to improve in vivo stability and protein expression.
- \cdot Used deep learning to predict mRNA expression and stability based on 3' and 5' UTR sequence data.
- \cdot Extracted model weights and used bioinformatic/statistical techniques to do causal inference to elucidate important mRNA regulatory motif effects on expression.
- Used genetic algorithms to develop generative models to create high expression 5' UTRs which were successfully transfected into human cell lines to test model accuracy *in vivo*.

Dept. of Chemical Engineering and Biotechnology - Cambridge September 2018 - June 2019 *MPhil Graduate Researcher*

- \cdot Developed graph based tools for mapping the network of organic chemistry.
- \cdot Modelled the entirety of the organic chemistry literature as a searchable graph, along with algorithms to allow for efficient network searching.
- · Developed all-in-one toolkit to allow for efficient organic chemical reaction synthesis pathway selection based on desired yield, reaction conditions, reaction feasibility, and other parameters.

Dept. of Chemical and Biological Engineering - Sheffield June 2016 - September 2018 Undergraduate Researcher

- \cdot EPSRC funded project investigating the growth and interactions of synthetic bacterial consortia in toxic landfill leachate for bioremediation purposes.
- Studied the effects of the composition of synthetic bacterial consortia, species richness (biodiversity) and bacterial interactions on the functioning of these synthetic ecosystems. Developed novel experimental and computational workflow analysing effects/interactions of large numbers of bacterial consortia using only growth rate and yield measurements - breaking open the black box by studying many black boxes.

PUBLICATIONS

Hardo, G., Noka, M., Bakshi, S. Accurate Segmentation of Bacterial Cells using Synthetic Training Data. *bioRxiv* 31 Jan 2022, doi: 10.1101/2021.07.21.453284

Hardo, G., Bakshi, S. Challenges of analysing stochastic gene expression in bacteria using single-cell time-lapse experiments. *Essays in Biochemistry* 16 April 2021; 65 (1): 67–79. doi: 10.1042/EBC20200015

TEACHING

Supervisor for Mathematical Biology - Natural Sciences Tripos Corpus Christi and Pembroke Colleges	2020 - Present
Probability theory \cdot Linear algebra \cdot Statistics \cdot Linear models \cdot Calculus \cdot Biological systems modelling \cdot Game Theory	Differential equations \cdot
Supervisor for BioDesign - MPhil Systems Biology Department of Applied Mathematics and Theoretical Physics	2022
Synthetic biology \cdot Genetic circuit design \cdot Modelling genetic circuits	
Supervisor for Part III Systems Biology Cambridge Systems Biology Centre	2022
Synthetic biology principles \cdot Molecular cloning	
STUDENT SUPERVISION	
Sarah Murgraff MPhil Biotechnology	2022
Machine Learning for phage protein structure classification	
Dustin Baek MEng Engineering Tripos	2021 - 2022
Superresolution microscopy using deep learning and synthetic image data	

VOLUNTEERING AND EXTRACURRICULAR

Molecular Programming Society

2020 - 2022 International

Textbook Editor

· We are writing a free and open source textbook called The Art of Molecular Programming. I am one of the editors of the 3rd and final chapter: *Interfaces*, where I focus on biological interfaces with molecular programming.

Molecular Programming Interest Group (molpigs)

Co-founder, VP, treasurer

- · molpigs is an interest group for early career researchers in molecular programming. To date we have over 200 members across the world.
- \cdot We host a regular podcast with guests from across the entire field, where we discuss research, graduate student and early career life, and the challenges of academia.
- We also have an online forum where members of the molecular programming community can congregate to share ideas and have general academic discussions.

Cambridge University Synthetic Biology Society President & iGEM coordinator

- · Part of team who are working on the Synthetic Biology Society's Long Term Project.
- · Project involves developing a toolkit allowing for rational design of bacterial co-culture interactions (commensalism, parasitism, mutualism etc).
- · Rebooted Cambridge's iGEM team for 2022.
- · I lead the computational workshops which aim to teach anyone who is interested some principles for modelling biological systems.

Engineers Without Borders Sheffield	September 2015 - July 2018
Project Leader and then Vice President	Engineers Without Borders UK

· Leader of a project which aims to install irrigation solutions in Malawi. Goal is to transfer thousands of litres of water to farmland during the dry season, increasing food security.

ACADEMIC ACHIEVEMENTS

MPhil special commendation		University of Cambridge, 2019
Issac Newton Trust Master's Scholarshi	р	University of Cambridge, 2018
Martin Pitt Prize for best Chemical En	gineering Design Project	University of Sheffield, 2018
Sarjant Prize for best overall degree aca	ademic performance	University of Sheffield, 2018
EPSRC Vacation Bursary	Universi	ty of Sheffield & EPSRC, 2017
Best Student Researcher	Department of Chemical Ar	nd Biological Engineering, 2016
Summer Research Fellowship	Department of Chemical Ar	nd Biological Engineering, 2016

2019 - Present International

September 2018 - Present University of Cambridge